Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Pediatr Gastroenterol Nutr ; 78(1): 27-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38291699

ABSTRACT

OBJECTIVES: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children. Roughly a quarter of paediatric patients with NAFLD develop nonalcoholic steatohepatitis and fibrosis. Here, we evaluated the diagnostic accuracy of previously published noninvasive fibrosis scores to predict liver fibrosis in a large European cohort of paediatric patients with NAFLD. METHODS: The 457 patients with biopsy-proven NAFLD from 10 specialized centers were included. We assessed diagnostic accuracy for the prediction of any (F ≥ 1), moderate (F ≥ 2) or advanced (F ≥ 3) fibrosis for the AST/platelet ratio (APRI), Fibrosis 4 score (FIB-4), paediatric NAFLD fibrosis score (PNFS) and paediatric NAFLD fibrosis index (PNFI). RESULTS: Patients covered the full spectrum of fibrosis (F0: n = 103; F1: n = 230; F2: n = 78; F3: n = 44; F4: n = 2). None of the scores were able to accurately distinguish the presence of any fibrosis from no fibrosis. For the detection of moderate fibrosis, area under the receiver operating characteristic curve (AUROC) were: APRI: 0.697, FIB-4: 0.663, PNFI: 0.515, PNFS: 0.665, while for detection of advanced fibrosis AUROCs were: APRI: 0.759, FIB-4: 0.611, PNFI: 0.521, PNFS: 0.712. Fibrosis scores showed no diagnostic benefit over using ALT ≤ 50/ > 50 IU/L as a cut-off. CONCLUSIONS: Established fibrosis scores lack diagnostic accuracy to replace liver biopsy for staging of fibrosis, giving similar results as compared to using ALT alone. New diagnostic tools are needed for Noninvasive risk-stratification in paediatric NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Child , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Platelet Count , Aspartate Aminotransferases , Alanine Transaminase , Severity of Illness Index , Liver Cirrhosis/diagnosis , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , ROC Curve , Biopsy , Liver/pathology
2.
Int J Obes (Lond) ; 46(5): 1051-1058, 2022 05.
Article in English | MEDLINE | ID: mdl-35140394

ABSTRACT

BACKGROUND/OBJECTIVES: Sleeping behavior and individual prospensity in sleep timing during a 24 h period, known as chronotypes, are underestimated factors, which may favor the development of obesity and metabolic diseases. Furthermore, melatonin is known to play an important role in circadian rhythm, but was also suggested to directly influence metabolism and bodyweight regulation. Since disturbed and shifted sleep rhythms have been observed in adolescents with obesity, this study aimed to investigate potential interactions between melatonin secretion, chronobiology, and metabolism. In addition, the influence of artificial light especially emitted by electronic devices on these parameters was of further interest. SUBJECTS/METHODS: We performed a cross-sectional study including 149 adolescents (mean age 14.7 ± 2.1 years) with obesity. Metabolic blood parameters (e.g., cholesterol, triglycerides, uric acid, and insulin) were obtained from patients and correlated with nocturnal melatonin secretion. Melatonin secretion was determined by measuring 6-sulfatoxymelatonin (MT6s), the major metabolite of melatonin in the first-morning urine, and normalized to urinary creatinine levels to account for the urinary concentration. Chronobiologic parameters were further assessed using the Munich ChronoType Questionnaire. RESULTS: Subjects with insulin resistance (n = 101) showed significantly lower nocturnal melatonin levels compared to those with unimpaired insulin secretion (p = 0.006). Furthermore, triglyceride (p = 0.012) and elevated uric acid levels (p = 0.029) showed significant associations with melatonin secretion. Patients with late chronotype showed a higher incidence of insulin resistance (p = 0.018). Moreover, late chronotype and social jetlag were associated with the time and duration of media consumption. CONCLUSION: We identified an association of impaired energy metabolism and lower nocturnal melatonin secretion in addition to late chronotype and increased social jetlag (misalignment of biological and social clocks) in adolescents with obesity. This might point towards a crucial role of chronotype and melatonin secretion as risk factors for the development of pediatric and adolescent obesity.


Subject(s)
Insulin Resistance , Melatonin , Pediatric Obesity , Adolescent , Child , Circadian Rhythm/physiology , Cross-Sectional Studies , Humans , Insulin Resistance/physiology , Melatonin/metabolism , Sleep/physiology , Surveys and Questionnaires , Uric Acid
3.
Child Obes ; 17(2): 136-143, 2021 03.
Article in English | MEDLINE | ID: mdl-33524304

ABSTRACT

Introduction: Obesity is a major health burden in children and adolescents. One influential factor is the choice of food, which is partly determined by gustatory perception. Cross-sectional studies have provided evidence that gustatory function is reduced in patients with obesity compared to individuals with normal weight. This longitudinal study was aimed at investigating potential effects of a multimodal lifestyle intervention program on gustatory function in pediatric patients with obesity. Methods: Gustatory perception of five different taste qualities (sweet, sour, salty, bitter, and umami) was assessed in n = 102 patients (age 6-18) with obesity (BMI >97th percentile). Testing was performed before (T0) and after (T1) a residential multimodal weight reduction program between June and December 2015 using well-established taste strips. Results: Overall, identification performance increased between T0 and T1. Patients were most successful at identifying the taste quality sweet at both time points and reached higher scores at identifying umami and bitter at T1 compared to T0. Moreover, patients rated the highest concentration of sweet significantly sweeter at T1 compared to T0. Conclusion: Gustatory function can improve after a multimodal lifestyle intervention program in pediatric patients with obesity. This may lead to a modified choice of food, possibly resulting in a long-term therapeutic success. Therefore, these findings underline the importance of professional nutritional counseling as part of treatment for obesity.


Subject(s)
Pediatric Obesity , Taste , Adolescent , Child , Cross-Sectional Studies , Humans , Life Style , Longitudinal Studies , Pediatric Obesity/therapy
4.
Article in English | MEDLINE | ID: mdl-33388475

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Eicosanoids/metabolism , Epoxide Hydrolases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Pediatric Obesity/metabolism , Adolescent , Child , Female , Humans , Lipidomics , Male
5.
Acta Biomater ; 123: 178-186, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33472102

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents. About 30% of patients with NAFLD progress to the more severe condition of nonalcoholic steatohepatitis (NASH), which is typically diagnosed using liver biopsy. Liver stiffness (LS) quantified by elastography is a promising imaging marker for the noninvasive assessment of NAFLD and NASH in pediatric patients. However, the link between LS and specific histopathologic features used for clinical staging of NAFLD is not well defined. Furthermore, LS data reported in the literature can vary greatly due to the use of different measurement techniques. Uniquely, time-harmonic elastography (THE) based on ultrasound and magnetic resonance elastography (MRE) use the same mechanical stimulation, allowing us to compare LS in biopsy-proven NAFLD previously determined by THE and MRE in 67 and 50 adolescents, respectively. In the present work, we analyzed the influence of seven distinct histopathologic features on LS, including septal infiltration, bridging fibrosis, pericellular fibrosis, hepatocellular ballooning, portal inflammation, lobular inflammation, and steatosis. LS was highly correlated with periportal and lobular fibrosis as well as hepatocellular ballooning while no independent association was found for inflammation and steatosis. Based on this analysis, we propose a composite elastography score (CES) which includes the four key histopathologic features identified as mechanically relevant. Interestingly, CES-relevant histopathologic features were associated with zonal distribution patterns of pediatric NAFLD. Mechano-structural changes associated with NAFLD progression can be histopathologically staged using the CES, which is easily determined noninvasively based on LS measured by time-harmonic elastography.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Adolescent , Biopsy , Child , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Ultrasonography
6.
J Hepatol ; 74(3): 638-648, 2021 03.
Article in English | MEDLINE | ID: mdl-33342543

ABSTRACT

BACKGROUND & AIMS: In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice. METHODS: The clinical relevance of oxidative stress was investigated by liver RNA sequencing in a well-characterized cohort of patients with non-alcoholic fatty liver disease (n = 63) and correlated with histological and clinical parameters. For functional analysis, hepatocyte-specific Nemo knockout (NEMOΔhepa) mice were crossed with hepatocyte-specific Keap1 knockout (KEAP1Δhepa) mice. RESULTS: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that Keap1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMOΔhepa livers was rescued after deleting Keap1. As a consequence, NEMOΔhepa/KEAP1Δhepa livers showed reduced apoptosis compared to NEMOΔhepa livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMOΔhepa/KEAP1Δhepa compared to NEMOΔhepa livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. CONCLUSIONS: NRF2 activation in patients with non-alcoholic steatohepatitis correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis. LAY SUMMARY: The KEAP1 (Kelch-like ECH-associated protein-1)/NRF2 (erythroid 2-related factor 2) axis has a major role in regulating cellular redox balance. Herein, we show that NRF2 activity correlates with the grade of inflammation in patients with non-alcoholic steatohepatitis. Functional studies in mice actually show that NRF2 activation, resulting from KEAP1 deletion, protects against fibrosis and cancer.


Subject(s)
Carcinogenesis/metabolism , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/genetics , Adolescent , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Cycle/genetics , Child , Cohort Studies , Disease Models, Animal , Disease Progression , Down-Regulation/genetics , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Oxidative Stress/genetics
7.
Int J Mol Sci ; 20(22)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703413

ABSTRACT

1) Background: Central congenital hypothyroidism (CCH) is a rare endocrine disorder that can be caused by mutations in the ß-subunit of thyrotropin (TSHB). The TSHB mutation C105Vfs114X leads to isolated thyroid-stimulating-hormone-(TSH)-deficiency and results in a severe phenotype. The aim of this study was to gain more insight into the underlying molecular mechanism and the functional effects of this mutation based on two assumptions: a) the three-dimensional (3D) structure of TSH should be modified with the C105V substitution, and/or b) whether the C-terminal modifications lead to signaling differences. 2) Methods: wild-type (WT) and different mutants of hTSH were generated in human embryonic kidney 293 cells (HEK293 cells) and TSH preparations were used to stimulate thyrotropin receptor (TSHR) stably transfected into follicular thyroid cancer cells (FTC133-TSHR cells) and transiently transfected into HEK293 cells. Functional characterization was performed by determination of Gs, mitogen activated protein kinase (MAPK) and Gq/11 activation. 3) Results: The patient mutation C105Vfs114X and further designed TSH mutants diminished cyclic adenosine monophosphate (cAMP) signaling activity. Surprisingly, MAPK signaling for all mutants was comparable to WT, while none of the mutants induced PLC activation. 4) Conclusion: We characterized the patient mutation C105Vfs114X concerning different signaling pathways. We identified a strong decrease of cAMP signaling induction and speculate that this could, in combination with diverse signaling regarding the other pathways, accounting for the patient's severe phenotype.


Subject(s)
Congenital Hypothyroidism , MAP Kinase Signaling System , Mutation , Receptors, Thyrotropin , Second Messenger Systems , Thyrotropin, beta Subunit , Cell Line, Tumor , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Cyclic AMP/genetics , Cyclic AMP/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Protein Domains , Receptors, Thyrotropin/chemistry , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Thyrotropin, beta Subunit/chemistry , Thyrotropin, beta Subunit/genetics , Thyrotropin, beta Subunit/metabolism
8.
Mol Endocrinol ; 30(9): 954-64, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27387040

ABSTRACT

Naturally occurring thyrotropin (TSH) mutations are rare, which is also the case for the homologous heterodimeric glycoprotein hormones (GPHs) follitropin (FSH), lutropin (LH), and choriogonadotropin (CG). Patients with TSH-inactivating mutations present with central congenital hypothyroidism. Here, we summarize insights into the most frequent loss-of-function ß-subunit of TSH mutation C105Vfs114X, which is associated with isolated TSH deficiency. This review will address the following question. What is currently known on the molecular background of this TSH variant on a protein level? It has not yet been clarified how C105Vfs114X causes early symptoms in affected patients, which are comparably severe to those observed in newborns lacking any functional thyroid tissue (athyreosis). To better understand the mechanisms of this mutant, we have summarized published reports and complemented this information with a structural perspective on GPHs. By including the ancestral TSH receptor agonist thyrostimulin and pathogenic mutations reported for FSH, LH, and choriogonadotropin in the analysis, insightful structure function and evolutionary restrictions become apparent. However, comparisons of immunogenicity and bioactivity of different GPH variants is hindered by a lack of consensus for functional analysis and the diversity of used GPH assays. Accordingly, relevant gaps of knowledge concerning details of GPH mutation-related effects are identified and highlighted in this review. These issues are of general importance as several previous and recent studies point towards the high impact of GPH variants in differential signaling regulation at GPH receptors (GPHRs), both endogenously and under diseased conditions. Further improvement in this area is of decisive importance for the development of novel targeted therapies.


Subject(s)
Mutation/genetics , Thyrotropin/genetics , Chorionic Gonadotropin/genetics , Chorionic Gonadotropin/metabolism , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Thyrotropin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...